Total No. of Pages: 3

Seat No.

S.E. (Civil Engg.) (Semester-III) (Revised) Examination, May - 2017 ENGINEERING MATHEMATICS-III

Sub. Code: 63338

Day and Date: Friday, 12-05-2017

Total Marks: 100

Time: 02.00 p.m. to 5.00 p.m.

Instructions: 1) All questions are compulsory.

2) Figures to the right indicate full marks.

3) Use of Calculator is allowed.

SECTION-I

Q1) Solve any three of the following.

[18]

a) Solve $(D^3+D^2+D+1) y = \cos^2 x$

b) Solve $(D^2-2D+1) y=xe^x \sin x$

c) Solve $(D^3-6D^2+12D-8) y = x^2+1$

 d) A cantilever beam of length l and weighing wlb per unit is subjected to a horizontal compressive force P applied at the free end, satisfies the

differential equation
$$\frac{d^2y}{dx^2} + n^2y = -\frac{Wn^2x^2}{2P}$$
, where $n^2 = \frac{P}{EI}$

Taking the origin at the free end and y axis upwards, find the maximum deflection.

Q2) Attempt any two of the following.

[16]

- a) Find the directional derivative of $F = x^2y^2z^2$ at the point (1,1,-1) in the direction of the tangent to the curve $x = e^t$, $y = 2\sin t + 1$, $z = t \cos t$ at t=0.
- b) Prove that (i) grad $r^n = nr^{n-2} \overline{r}$ (ii) $\operatorname{div}(\overline{r}/r^3)=0$
- Show that the vector field represented by $\overline{F} = (y^2 + 2xz^2) i + (2xy z) j + (2x^2z y + 2z)k$ is irrotational but not solenoidal. Also obtain its scalar potential.

P.T.O.

[16]

Q3) Attempt any two of the following.

a) Fit a second degree parabola to the following data

x 0 1 2 3 4 y 4 -1 4 11 20

b) Fit the curve $y = ab^x$ to the following data

x						and the state of		
	50	450	780	1200	4400	4800	5300	
y.	28	30	32	36	51	58	69	

c) Find the two lines of regression for the following data

x:	4.3	4.5	5.9	5.6	6.1	5.2	3.8	2.1
v	12.6	12.1	11.6	11.8	11.4	11.8	13.2	14.1

SECTION-II

Q4) Attempt any two of the following.

[16]

- a) 10% of the tools produced in a certain manufacturing process turn out to be defective
 - i) Find the probability that in a sample of 10 tools chosen at random
 - 1) exactly two are defective
- 2) exactly three are defective
- ii) Find the probability that out of 20 tools selected at random there are
 - 1) exactly two are defective
- 2) at least two are defective.
- b) The customer accounts of a certain departmental store have an average balance of Rs. 120 and standard deviation of Rs. 40. Assuming the distribution of accounts balance is normal find the proportion of accounts
 - i) over Rs. 150
- ii) between Rs. 100 & Rs. 150
- iii) between Rs. 60 & Rs. 90
- iv) below Rs. 60

Given: for S.N.V.z, the area from z = 0 to z = 0.75 is 0.2734, the area from z = 0 to z = 0.5 is 0.1916, the area from z = 0 to z = 1.5 is 0.4332

- c) i) If the probability density function of a discrete random variable x which assumes the values $x_p x_2 x_3$ such that $P(x_1) = 2P(x_2) 3P(x_3)$. Obtain the probability distribution of x.
 - ii) Verify whether the following function defines a probability distribution or not.

$$f(x) = \frac{1}{2}e^{-|x|}$$
 for $-\infty < x < \infty$

SL-235

Q5) Attempt any three of the following.

[18]

- a) Find the Laplace transform of t e' sin 2t cos t
- b) Find the Laplace transform of $\frac{(1-\cos 3t)}{t}$
- c) Find the inverse Laplace transform of $\frac{s^2 + 16s 24}{s^4 + 20s^2 + 64}$
- d) Solve the following differential equation using Laplace transform

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1 \text{ Where } y(0) = 0, \ y'(0) = 1$$

Q6) Attempt any two of the following.

[16]

- a) Evaluate $\int_{0}^{1+t} z^2 dz$ along
 - i) the line y = x,
- ii) the parabola $x = y^2$.
- b) Show that $u = \cos x \cosh y$ is a harmonic function and find its harmonic conjugate and corresponding analytic function.
- c) Evaluate $\int_{C} \frac{e^{3z}}{z-i} dz$ where C is the curve |z-2|+|z+2|=6

